1 (i) Show algebraically that the function $\mathrm{f}(x)=\frac{2 x}{1-x^{2}}$ is odd.
Fig. 7 shows the curve $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant 4$, together with the asymptote $x=1$.

Fig. 7
(ii) Use the copy of Fig. 7 to complete the curve for $-4 \leqslant x \leqslant 4$.

2 The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined as follows.

$$
\begin{array}{ll}
\mathrm{f}(x)=\ln x, & x>0 \\
\mathrm{~g}(x)=1+x^{2}, & x \in \mathbb{R}
\end{array}
$$

Write down the functions $\operatorname{fg}(x)$ and $\operatorname{gf}(x)$, and state whether these functions are odd, even or neither.

3 Each of the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ below is obtained using a sequence of two transformations applied to the corresponding dashed graph. In each case, state suitable transformations, and hence find expressions for $\mathrm{f}(x)$ and $\mathrm{g}(x)$.
(i)

(ii)

4 Fig. 4 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\sqrt{1-9 x^{2}},-a \leqslant x \leqslant a$.

Fig. 4
(i) Find the value of a. [2]
(ii) Write down the range of $\mathrm{f}(x)$.
(iii) Sketch the curve $y=\mathrm{f}\left(\frac{1}{3} x\right)-1$.

5 You are given that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are odd functions, defined for $x \in \mathbb{R}$.
(i) Given that $\mathrm{s}(x)=\mathrm{f}(x)+\mathrm{g}(x)$, prove that $\mathrm{s}(x)$ is an odd function.
(ii) Given that $\mathrm{p}(x)=\mathrm{f}(x) \mathrm{g}(x)$, determine whether $\mathrm{p}(x)$ is odd, even or neither.

6 (i) State the algebraic condition for the function $\mathrm{f}(x)$ to be an even function.
What geometrical property does the graph of an even function have?
(ii) State whether the following functions are odd, even or neither.
(A) $\mathrm{f}(x)=x^{2}-3$
(B) $\mathrm{g}(x)=\sin x+\cos x$
(C) $\mathrm{h}(x)=\frac{1}{x+x^{3}}$

7 Fig. 8 shows part of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\mathrm{e}^{-\frac{1}{5} x} \sin x$, for all x.

Fig. 8
(i) Sketch the graphs of
(A) $y=\mathrm{f}(2 x)$,
(B) $y=\mathrm{f}(x+\pi)$.
(ii) Show that the x-coordinate of the turning point P satisfies the equation $\tan x=5$.

Hence find the coordinates of P .
(iii) Show that $\mathrm{f}(x+\pi)=\mathrm{e}^{-\frac{1}{5} \pi} \mathrm{f}(x)$. Hence, using the substitution $u=x-\pi$, show that

$$
\int_{\pi}^{2 \pi} \mathrm{f}(x) \mathrm{d} x=\mathrm{e}^{-\frac{1}{5} \pi} \int_{0}^{\pi} \mathrm{f}(u) \mathrm{d} u
$$

Interpret this result graphically. [You should not attempt to integrate $\mathrm{f}(x)$]

